Introduction to NCBI Cloud Computing for Biologists

Cooper J. Park, PhD; Rana Morris, PhD

Outline

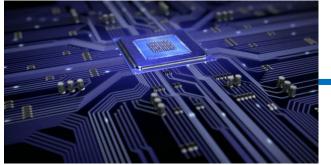
- What is the Cloud
- Objective 0 Logging In
- Today's Case Study
- Objective 1 Navigating the AWS cloud console
- Objective 2 Mining NCBI's SRA data
- Objective 3 Using magicBLAST & Genome Data Viewer in the Cloud
- Wrap up & Billing

What is "The Cloud"

A "one-stop shop" for high-demand computing services delivered across the internet – 1/6

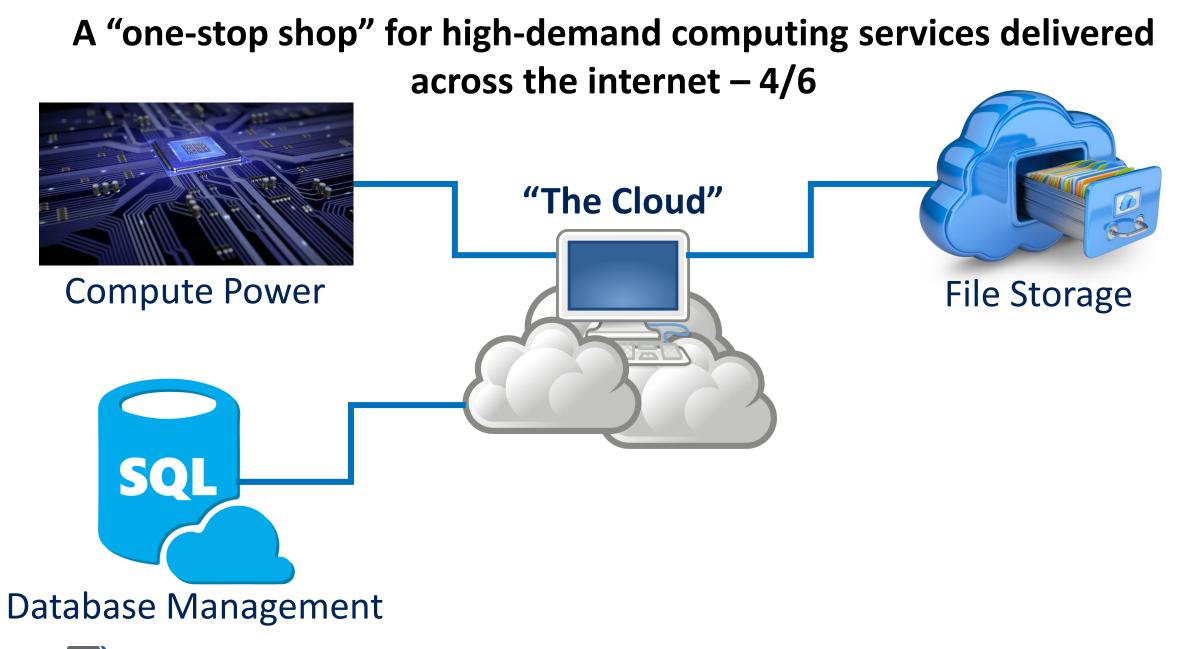
"The Cloud"

A "one-stop shop" for high-demand computing services delivered across the internet – 2/6

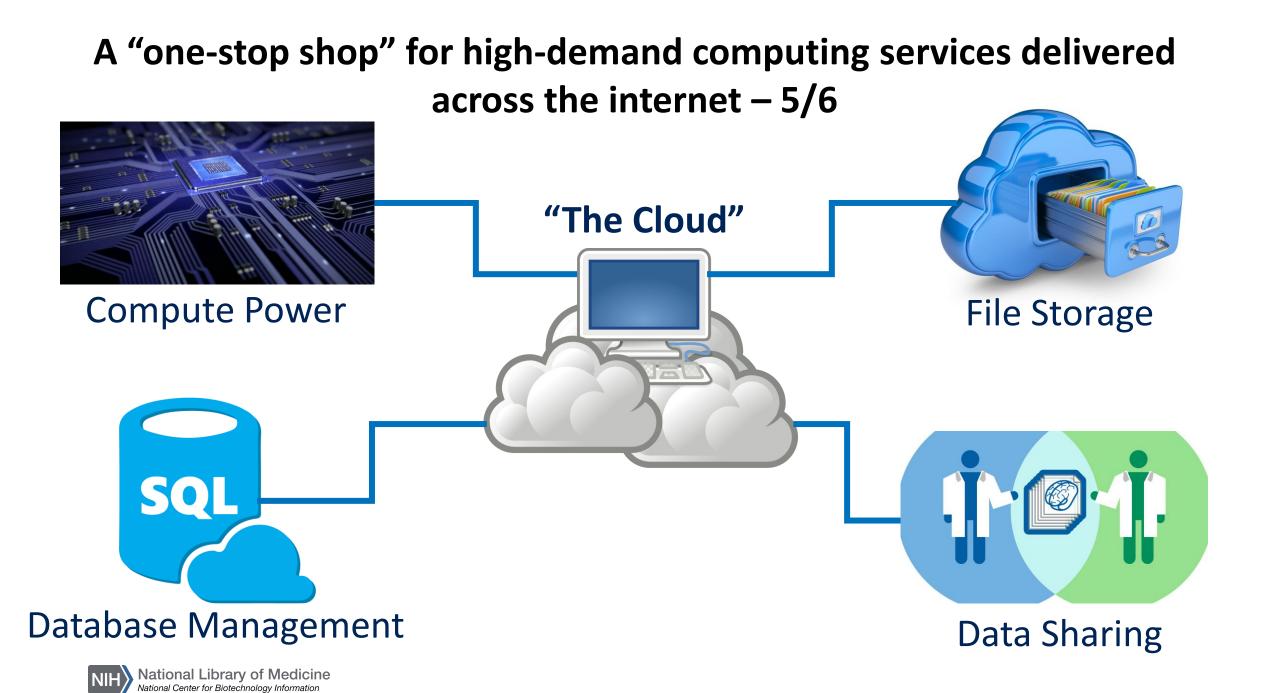


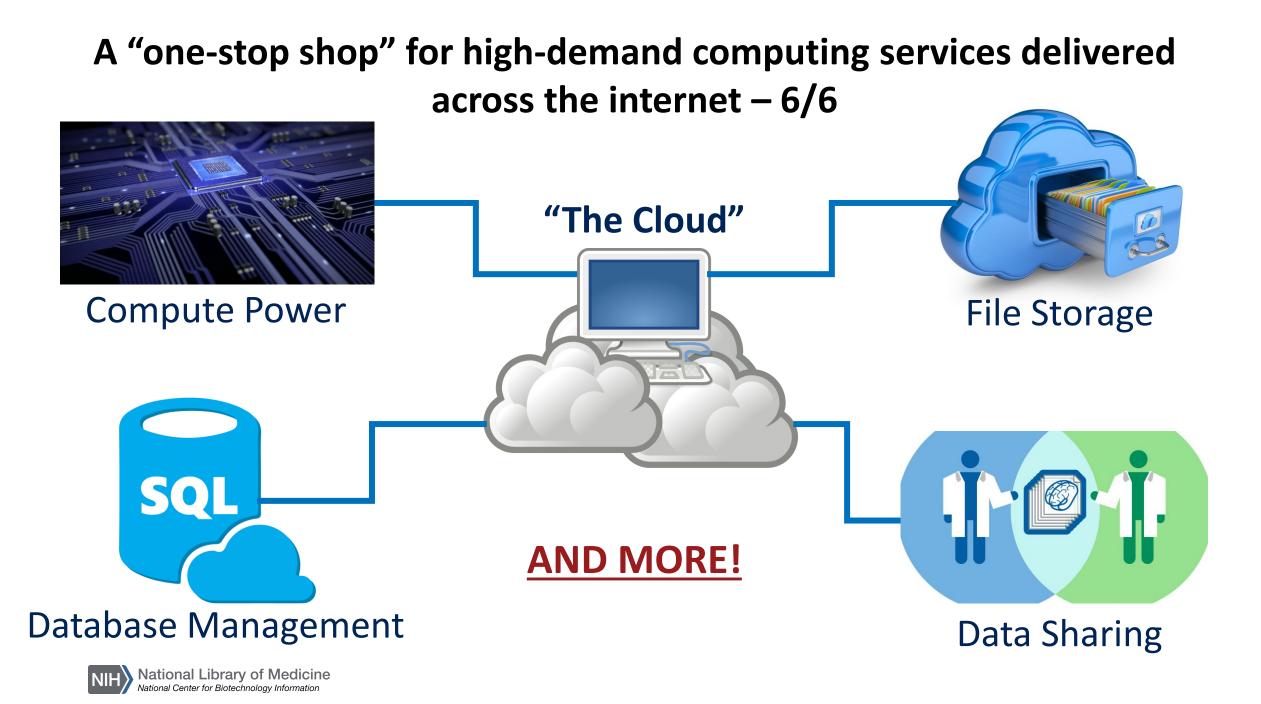
Compute Power

A "one-stop shop" for high-demand computing services delivered across the internet – 3/6



Compute Power





NIH National Library of Medicine National Center for Biotechnology Information

H National Library of Medicine National Center for Biotechnology Information

POLL!

Which aspect of your own computational research slows your progress down

Reasons to use the cloud – 1/5

1) Cost

- Pay only for what you use
- Often cheaper than managing your own infrastructure

3) Speed and Performance

2) Global Access

- Data can be shared and accessed seamlessly on a global scale

- Resources can be optimized for specific needs
- Workflows can be scaled to meet demand
- New technologies/services constantly developed and immediately available
- Easily back-up, protect, version control and recover crucial data
- Computing environments can be saved with 3rd party tools to replicate workflows

Reasons to use the cloud -2/5

1) Cost

- Pay only for what you use
- Often cheaper than managing your own infrastructure

3) Speed and Performance

2) Global Access

- Data can be shared and accessed seamlessly on a global scale

- Resources can be optimized for specific needs
- Workflows can be scaled to meet demand
- New technologies/services constantly developed and immediately available
- Easily back-up, protect, version control and recover crucial data
- Computing environments can be saved with 3rd party tools to replicate workflows

Reasons to use the cloud – 3/5

1) Cost

- Pay only for what you use
- Often cheaper than managing your own infrastructure

2) Global Access

- Data can be shared and accessed seamlessly on a global scale

3) Speed and Performance

- Resources can be optimized for specific needs
- Workflows can be scaled to meet demand
- New technologies/services constantly developed and immediately available
- Easily back-up, protect, version control and recover crucial data
- Computing environments can be saved with 3rd party tools to replicate workflows

Reasons to use the cloud – 4/5

1) Cost

- Pay only for what you use
- Often cheaper than managing your own infrastructure

3) Speed and Performance

2) Global Access

- Data can be shared and accessed seamlessly on a global scale

4) Reproducibility, Security, and Reliability

- Resources can be optimized for specific needs
- Workflows can be scaled to meet demand
- New technologies/services constantly developed and immediately available

- Easily back-up, protect, version control and recover crucial data

 Computing environments can be saved with 3rd party tools to replicate workflows

Reasons to use the cloud – 5/5

1) Cost

- Pay only for what you use
- Often cheaper than managing your own infrastructure

3) Speed and Performance

2) Global Access

- Data can be shared and accessed seamlessly on a global scale

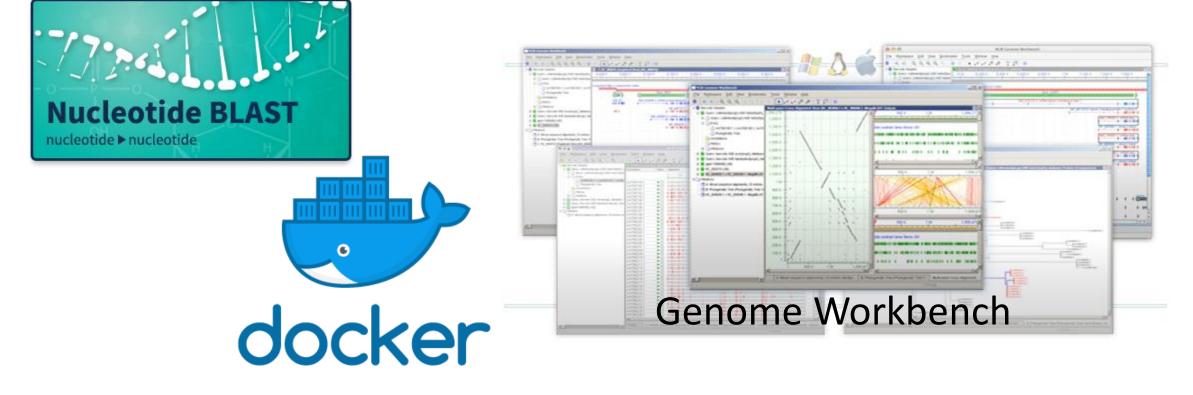
- Resources can be optimized for specific needs
- Workflows can be scaled to meet demand
- New technologies/services constantly developed and immediately available
- Easily back-up, protect, version control and recover crucial data
- Computing environments can be saved with 3rd party tools to replicate workflows

Meet your commercial cloud providers – 1/2

Google Cloud

Meet your commercial cloud providers – 2/2

Google Cloud



NCBI and the Cloud

SRA - Now available on the cloud

Sequence Read Archive (SRA) data, available through multiple cloud providers and NCBI servers, is the largest publicly available repository of high throughput sequencing data. The archive accepts data from all branches of life as well as metagenomic and environmental surveys. SRA stores raw sequencing data and alignment information to enhance reproducibility and facilitate new discoveries through data analysis.

Objective 0 – Logging in & Navigating the AWS Console page

National Library of Medicine National Center for Biotechnology Information

Login Walkthrough

https://codeathon.ncbi.nlm.nih.gov

<u>Username</u>: "Email Prefix" (everything after the "@") <u>Password</u>: <See the chatbox>

Full Documentation at: https://parkcoj.github.io/Intro-to-NCBI-Cloud-Computing/

National Library of Medicine National Center for Biotechnology Information

Outline

- About NCBI
- What is the Cloud
- Objective 0 Logging In
- Today's Case Study
- Objective 1 Mining SRA metadata using AWS Athena
- Objective 2 Aligning sequence reads using AWS EC2 & MagicBLAST
- Objective 3 Visualize read alignment in Genome Data Viewer
- Wrap up & Billing

Case Study – Clinical background – 1/2

 Through years of clinical tests and evaluations, a 3-year-old Guyanese child is diagnosed with Bardet-Biedl syndrome (BBS).

Sardet Biedl Syndrome Foundation & FAMILY ASSOCIATION

Bardet Biedl Syndrome is a rare genetic disorder with highly variable symptoms which may include retinal degeneration, obesity, reduced kidney function, polydactyly (extra digits of the hands or feet) among many other features. While there are more than 20 genes associated with BBS, the underlying cause regardless of gene is malfunction of primary cilia, a key component of cellular communication. BBS is thus categorized as a ciliopathy, or a disease of the cilia.

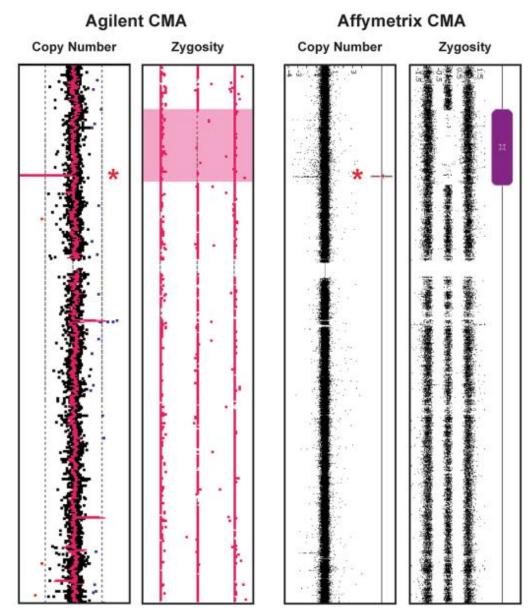
Case Study – Clinical background – 2/2

 Through years of clinical tests and evaluations, a 3-year-old Guyanese child is diagnosed with Bardet-Biedl syndrome (BBS).

Sardet Biedl Syndrome Foundation & FAMILY ASSOCIATION

Bardet Biedl Syndrome is a rare genetic disorder with highly variable symptoms which may include retinal degeneration, obesity, reduced kidney function, polydactyly (extra digits of the hands or feet) among many other features. While there are more than 20 genes associated with BBS, the underlying cause regardless of gene is malfunction of primary cilia, a key component of cellular communication. BBS is thus categorized as a ciliopathy, or a disease of the cilia.

 Authors sought to confirm this clinical diagnosis using some newer "longread" sequencing technologies.


Paper - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778042/

Case Study cont.

Authors first perform a chromosomal microarray test to identify which of the 20 BBS genes could be affected and identify a deletion in *BBS9!*

Is this deletion the cause of BBS in the child? To answer this, we need to:

- a) confirm whether this deletion is truly present
- b) Identify any previously known clinical associations between mutations in this gene and the BBS disorder using NCBI resources

Case Study – Our goals

Objective 1 – Search for the child's sequencing reads from deposited into NCBI's SRA database

Objective 2 - Align the DNA sequences against a template (aka: *Reference*) genome sequence for comparison

Objective 3 - Visualize the read alignment to confirm the deletion and investigate any known clinical relevance

Paper - <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778042/</u>

Objective 1 – Search for the sequencing reads deposited into NCBI's SRA database with AWS Athena

National Library of Medicine National Center for Biotechnology Information

What is the Sequence Read Archive

https://www.ncbi.nlm.nih.gov/sra

- Collection of user-submitted nucleotide sequencing reads, most of which are publicly available to download
 - Current size = >10 petabytes
- You can search the data online using the URL above, or by using AWS Athena

SRA - Now available on the cloud

Sequence Read Archive (SRA) data, available through multiple cloud providers and NCBI servers, is the largest publicly available repository of high throughput sequencing data. The archive accepts data from all branches of life as well as metagenomic and environmental surveys. SRA stores raw sequencing data and alignment information to enhance reproducibility and facilitate new discoveries through data analysis.

AWS Athena

- AWS data-table querying platform designed to rapidly query large tables of data using the SQL language
- NCBI offers <u>all</u> SRA read metadata as a table we can import into Athena
 - We can query the metadata with Athena to pull out only useful sequence data to use in our own research

Amazon Athena

Results can be saved to an S3 bucket

S3 Bucket (aka: "Storage")

- S3 buckets are the "hard drive" of your cloud computer
- Designed for long term storage of files and easy sharing
- Pay for what you use
 - Price increases with storage size/duration and data transfer rates
 - Today's S3 is <u>free!</u>

Import results and mine data in table format

Objective 1 - Goals

Computational

- Create an S3 bucket to store results and files
- Use basic SQL commands to query Athena data tables
- Save query results to personal computer and an S3 bucket

Case Study

- Find sequence data associated with case study publication

S3 & Athena Walkthrough

National Library of Medicine National Center for Biotechnology Information

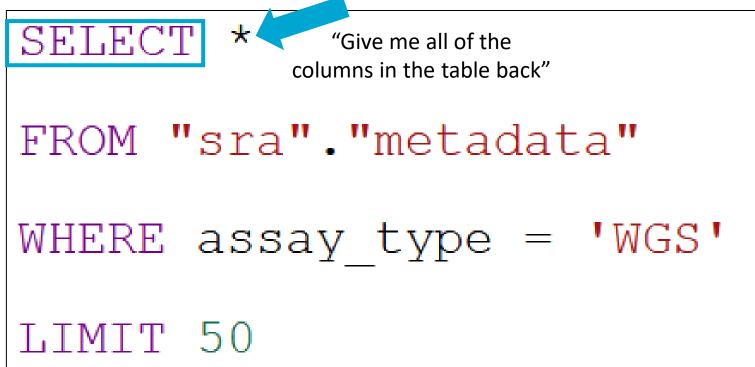
SQL programming language basics – 1/6

SELECT *

FROM "sra"."metadata" WHERE assay_type = 'WGS' LIMIT 50

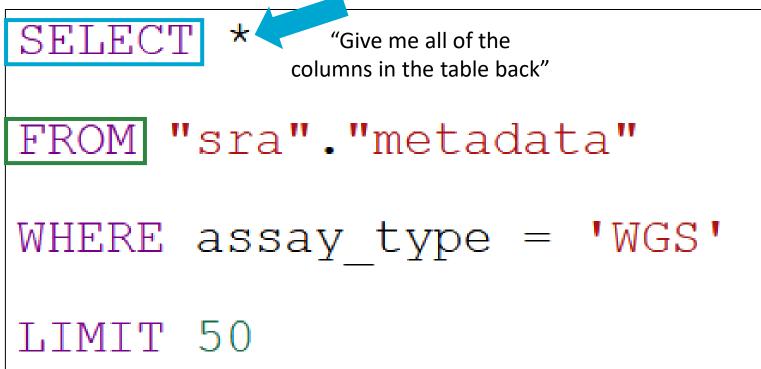
SQL programming language basics – 2/6

SELECT *


FROM "sra"."metadata"

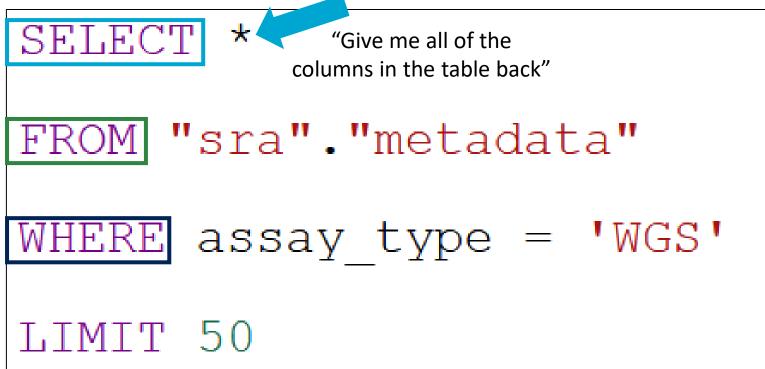
WHERE assay_type = 'WGS' LIMIT 50

Choose the table columns you want to see for each hit from the table


SQL programming language basics – 3/6

Choose the table columns you want to see for each hit from the table

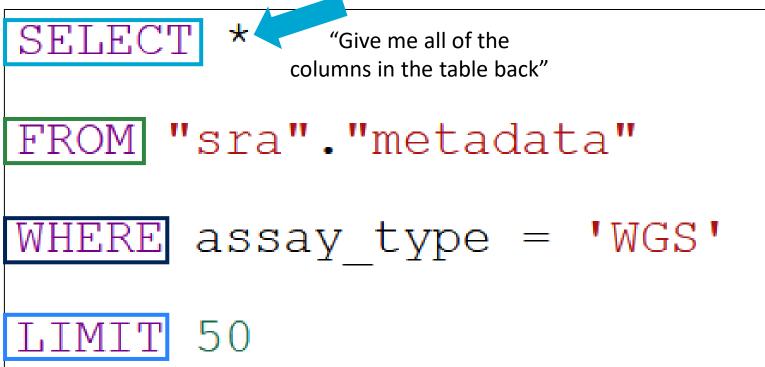
SQL programming language basics – 4/6



Choose the table columns you want to see for each hit from the table

Choose which table of data you are querying against

SQL programming language basics – 5/6



Choose the table columns you want to see for each hit from the table

Choose which table of data you are querying against Choose the columns you want to filter the data by

SQL programming language basics – 6/6

Choose the table columns you want to see for each hit from the table

Choose which table of data you are querying against

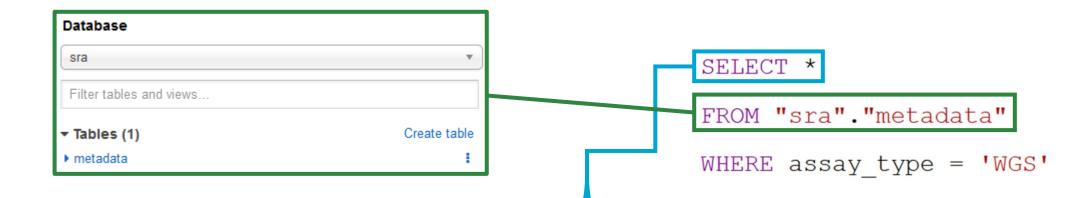
Choose the columns you want to filter the data by Restrict the results to a given number of rows

SELECT *

FROM "sra"."metadata"

WHERE assay_type = 'WGS'

•	acc 💌	assay_type 💌	center_name 💌	consent 💌	experiment 🕶	sample_name 🔻	instrument 💌	librarylayout 💌	libraryselectic
1	ERR2867935	WGS	DFDONG	public	ERX2873895	SAMEA5065299	Illumina HiSeq 2000	SINGLE	RANDOM
2	ERR351333	RNA-Seq	IGA Technology Services	public	ERX324170	SAMEA2220074	Illumina HiSeq 2000	SINGLE	other
3	ERR2867821	WGS	DFDONG	public	ERX2873781	SAMEA5065185	Illumina HiSeq 2000	SINGLE	RANDOM
4	ERR1995299	WGS	BEIJING GENOME INSTITUTE	public	ERX2055168	SAMEA104062412	Illumina HiSeq 2000	SINGLE	other
5	ERR358180	RNA-Seq	Genomic Technolgies Core Facility, Faculty of Life Sciences, University of Manchester	public	ERX330954	SAMEA2225912	AB SOLiD 4 System	SINGLE	cDNA
6	ERR2017761	WGS	BEIJING GENOME INSTITUTE	public	ERX2077343	SAMEA104142420	Illumina HiSeq 2000	PAIRED	other
7	ERR2017592	WGS	BEIJING GENOME INSTITUTE	public	ERX2077174	SAMEA104142099	Illumina HiSeq 2000	PAIRED	other
8	SRR8741520	RNA-Seq	LANZHOU UNIVERSITY	public	SRX5533654	Ppr-NaCI-24-2	Illumina HiSeq 2000	PAIRED	PolyA
9	ERR589275	RNA-Seq	Boehringer Ingelheim Pharma	public	ERX547266	SAMEA2735922	Illumina HiSeq 2000	SINGLE	RANDOM
10	SRR13123516	RNA-Seq	NANKAI UNIVERSITY	public	SRX9565550	EF_CL3	Illumina NovaSeq 6000	PAIRED	other

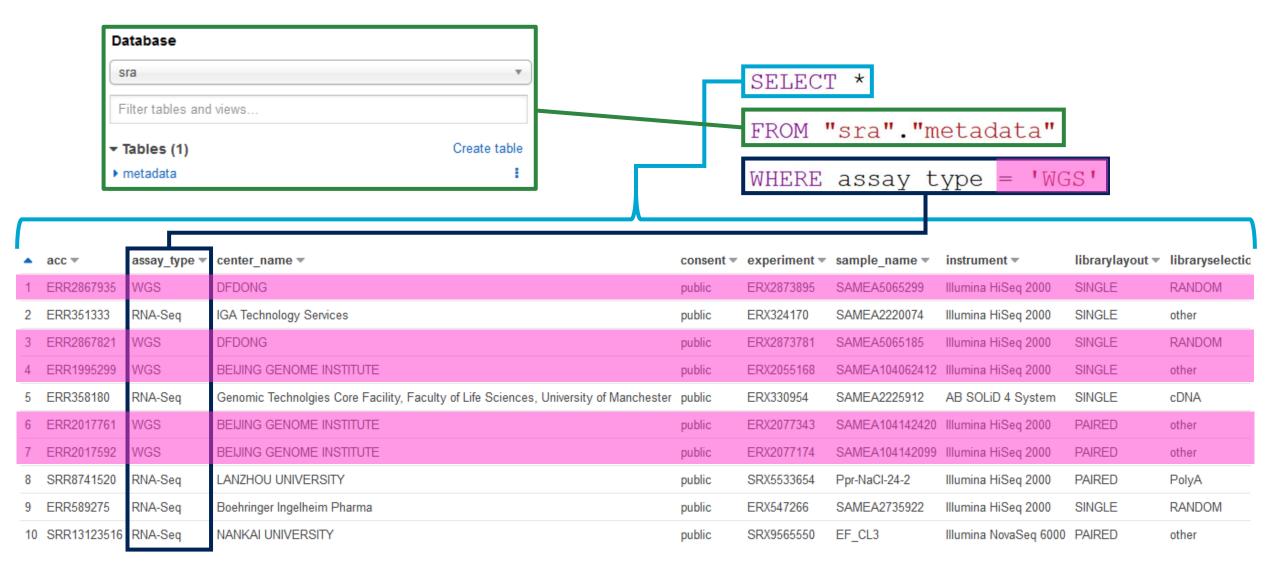


FROM "sra"."metadata"

WHERE assay_type = 'WGS'

🔺 acc 🔻	assay_type ▼	center_name 💌	consent 💌	experiment 🔻	sample_name 💌	instrument 🔻	librarylayout 🔻	libraryselectic
1 ERR2867935	WGS	DFDONG	public	ERX2873895	SAMEA5065299	Illumina HiSeq 2000	SINGLE	RANDOM
2 ERR351333	RNA-Seq	IGA Technology Services	public	ERX324170	SAMEA2220074	Illumina HiSeq 2000	SINGLE	other
3 ERR2867821	WGS	DFDONG	public	ERX2873781	SAMEA5065185	Illumina HiSeq 2000	SINGLE	RANDOM
4 ERR1995299	WGS	BEIJING GENOME INSTITUTE	public	ERX2055168	SAMEA104062412	Illumina HiSeq 2000	SINGLE	other
5 ERR358180	RNA-Seq	Genomic Technolgies Core Facility, Faculty of Life Sciences, University of Manchester	public	ERX330954	SAMEA2225912	AB SOLiD 4 System	SINGLE	cDNA
6 ERR2017761	WGS	BEIJING GENOME INSTITUTE	public	ERX2077343	SAMEA104142420	Illumina HiSeq 2000	PAIRED	other
7 ERR2017592	WGS	BEIJING GENOME INSTITUTE	public	ERX2077174	SAMEA104142099	Illumina HiSeq 2000	PAIRED	other
8 SRR8741520	RNA-Seq	LANZHOU UNIVERSITY	public	SRX5533654	Ppr-NaCI-24-2	Illumina HiSeq 2000	PAIRED	PolyA
9 ERR589275	RNA-Seq	Boehringer Ingelheim Pharma	public	ERX547266	SAMEA2735922	Illumina HiSeq 2000	SINGLE	RANDOM
10 SRR13123516	RNA-Seq	NANKAI UNIVERSITY	public	SRX9565550	EF_CL3	Illumina NovaSeq 6000	PAIRED	other

•	acc 💌	assay_type 💌	center_name 💌	consent •	experiment 💌	sample_name 💌	instrument 💌	librarylayout 🔻	libraryselectic
1	ERR2867935	WGS	DFDONG	public	ERX2873895	SAMEA5065299	Illumina HiSeq 2000	SINGLE	RANDOM
2	ERR351333	RNA-Seq	IGA Technology Services	public	ERX324170	SAMEA2220074	Illumina HiSeq 2000	SINGLE	other
3	ERR2867821	WGS	DFDONG	public	ERX2873781	SAMEA5065185	Illumina HiSeq 2000	SINGLE	RANDOM
4	ERR1995299	WGS	BEIJING GENOME INSTITUTE	public	ERX2055168	SAMEA104062412	Illumina HiSeq 2000	SINGLE	other
5	ERR358180	RNA-Seq	Genomic Technolgies Core Facility, Faculty of Life Sciences, University of Manchester	public	ERX330954	SAMEA2225912	AB SOLiD 4 System	SINGLE	cDNA
6	ERR2017761	WGS	BEIJING GENOME INSTITUTE	public	ERX2077343	SAMEA104142420	Illumina HiSeq 2000	PAIRED	other
7	ERR2017592	WGS	BEIJING GENOME INSTITUTE	public	ERX2077174	SAMEA104142099	Illumina HiSeq 2000	PAIRED	other
8	SRR8741520	RNA-Seq	LANZHOU UNIVERSITY	public	SRX5533654	Ppr-NaCI-24-2	Illumina HiSeq 2000	PAIRED	PolyA
9	ERR589275	RNA-Seq	Boehringer Ingelheim Pharma	public	ERX547266	SAMEA2735922	Illumina HiSeq 2000	SINGLE	RANDOM
10	SRR13123516	RNA-Seq	NANKAI UNIVERSITY	public	SRX9565550	EF_CL3	Illumina NovaSeq 6000	PAIRED	other



Da	atabase												
s	ra	▼	_	SELECT	[*								
F	ilter tables and	views											
- 1	Tables (1)	Create table		FROM "sra"."metadata"									
≯r	metadata	1		WHERE	S'								
200 =	assau tupo =	contor namo =	consent 💌	experiment -	sample name 🔻	instrument 💌	librarylayout 🔻	librarysoloctic					
	assay_type ▼ WGS	Center_name ▼ DFDONG	public	ERX2873895	SAMEA5065299	Illumina HiSeq 2000	SINGLE	RANDOM					
	RNA-Seq	IGA Technology Services	public	ERX324170	SAMEA2220074	Illumina HiSeq 2000	SINGLE	other					
	WGS	DFDONG	public	ERX2873781	SAMEA5065185	Illumina HiSeq 2000	SINGLE	RANDOM					
ERR1995299	WGS	BEIJING GENOME INSTITUTE	public	ERX2055168	SAMEA104062412	Illumina HiSeq 2000	SINGLE	other					
CIVICID00200						40.001/0.40	SINGLE	cDNA					
	RNA-Seq	Genomic Technolgies Core Facility, Faculty of Life Sciences, University of Man	nchester public	ERX330954	SAMEA2225912	AB SOLiD 4 System	SINGLE	CDINA					
ERR358180	RNA-Seq WGS	Genomic Technolgies Core Facility, Faculty of Life Sciences, University of Man BEIJING GENOME INSTITUTE	nchester public public	ERX330954 ERX2077343		AB SOLID 4 System Illumina HiSeq 2000	PAIRED	other					
ERR358180 ERR2017761					SAMEA104142420	· · · · ·							
ERR358180 ERR2017761 ERR2017592	WGS	BEIJING GENOME INSTITUTE	public	ERX2077343	SAMEA104142420	Illumina HiSeq 2000	PAIRED	other					
ERR358180 ERR2017761 ERR2017592 SRR8741520	wgs wgs	BEIJING GENOME INSTITUTE BEIJING GENOME INSTITUTE	public	ERX2077343 ERX2077174	SAMEA104142420 SAMEA104142099	Illumina HiSeq 2000 Illumina HiSeq 2000	PAIRED PAIRED	other other					

Da	atabase							
sr	ra	•		SELECT	[*			
Fi	ilter tables and	views						
- T	Tables (1)	Create table		FROM '	'sra"."m	etadata"		
In €	metadata			WHERE	assay t	ype <mark>= 'WG</mark>	S'	
		l						
acc 🔻	assay_type ▼	center_name 💌	consent 🔻	experiment 🔻	sample name 🔻	instrument 🔻	librarylayout 🔻	libraryselectic
		DFDONG	public	ERX2873895	SAMEA5065299	Illumina HiSeq 2000	SINGLE	RANDOM
		IGA Technology Services	public	ERX324170	SAMEA2220074	Illumina HiSeq 2000	SINGLE	other
		DFDONG	public	ERX2873781	SAMEA5065185	Illumina HiSeq 2000	SINGLE	RANDOM
ERR1995299	WGS	BEIJING GENOME INSTITUTE	public	ERX2055168	SAMEA104062412	Illumina HiSeq 2000	SINGLE	other
ERR358180	RNA-Seq	Genomic Technolgies Core Facility, Faculty of Life Sciences, University of Manche	ester public	ERX330954	SAMEA2225912	AB SOLiD 4 System	SINGLE	cDNA
ERR2017761	WGS	BEIJING GENOME INSTITUTE	public	ERX2077343	SAMEA104142420	Illumina HiSeq 2000	PAIRED	other
ERR2017592	WGS	BEIJING GENOME INSTITUTE	public	ERX2077174	SAMEA104142099	Illumina HiSeq 2000	PAIRED	other
SRR8741520	RNA-Seq	LANZHOU UNIVERSITY	public	SRX5533654	Ppr-NaCI-24-2	Illumina HiSeq 2000	PAIRED	PolyA
ERR589275	RNA-Seq	Boehringer Ingelheim Pharma	public	ERX547266	SAMEA2735922	Illumina HiSeq 2000	SINGLE	RANDOM
0 SRR13123516	RNA-Seg	NANKAI UNIVERSITY	public	SRX9565550	EF CL3	Illumina NovaSeq 6000	PAIRED	other

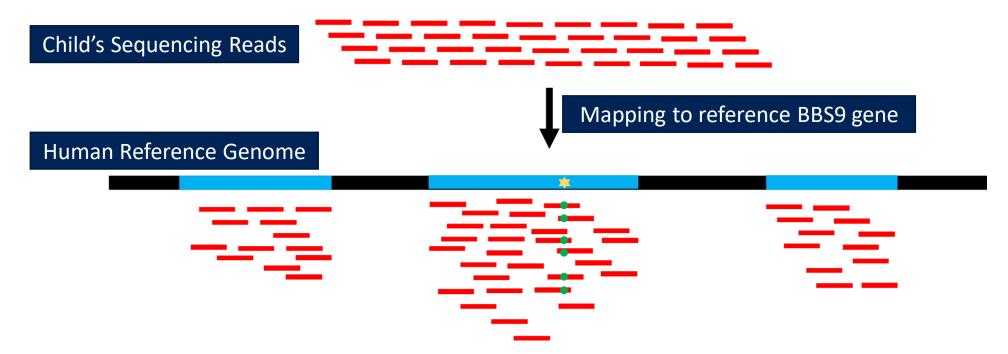
Athena Walkthrough

Objective 2 – Aligning sequence reads using AWS EC2 & MagicBLAST

National Library of Medicine National Center for Biotechnology Information

EC2 instance (aka: "Remote Computer")

- EC2 instances basically "remote computers"
 - Install software, perform data analyses, manage other AWS services using AWS CLI
- Lots of different customization options including OS, hard drive space, and memory
- Pay for what you use
 - Price increases with larger hardware needs and longer runtime
 - Today's EC2 is roughly **<u>\$0.20/hour/person</u>**
 - Turn it off when not in use!



EC2 Walkthrough

MagicBLAST

- A "flavor" of BLAST which aligns next-generation RNA or DNA sequencing reads against BLAST databases
 - Can use user-created custom databases OR NCBI maintained ones

Documentation - https://ncbi.github.io/magicblast/

Supporting Software

- Samtools
 - http://www.htslib.org/doc/
 - Manipulate MagicBLAST files into formats usable by Genome Data Viewer
- <u>A</u>mazon <u>W</u>eb <u>Service</u> <u>Command</u> <u>Line</u> Interface
 - https://docs.aws.amazon.com/cli/index.html
 - Moving data between EC2 and S3

Objective 2 - Goals

Computational:

- Create, customize, and manage an EC2 instance
- Run MagicBLAST and format output files with Samtools
- Upload files from your remote instance to your S3 bucket

Case Study:

Align child's DNA to human
reference genome for compare
against "expected" sequence

magicBLAST Walkthrough

National Library of Medicine National Center for Biotechnology Information

Objective 3 – Visualize the read alignment to confirm the deletion and investigate any known clinical relevance

National Library of Medicine National Center for Biotechnology Information

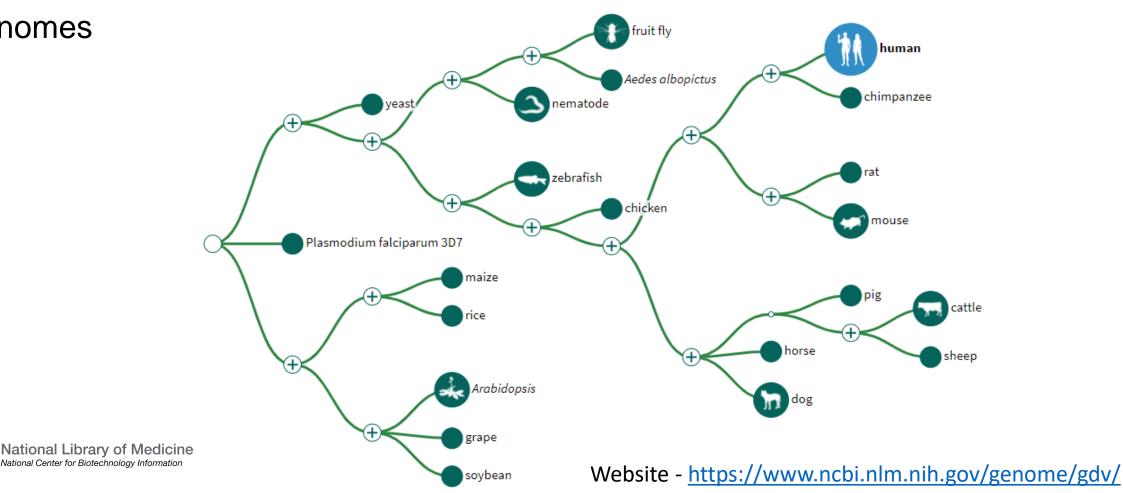
Case Study - Using the sequences

Align Sequences

Reference KKASKPKKAASKAPTKKPKATPVKKAKKKLAATPKKAKKPKTVKA Child KKAAKPKKAASKAPSKKPKATPVKKAKKKPAATPKKAKKPKV/KVKPVKASKPKKAKTVK

NCBI Magic-BLAST RNA-seq mapping tool

Visualize Alignment


	581	-	1• 🗇 🖒			• 🔍 🌆 🖡							
		10 M	20 M	30 M	40 M	50 H	60 M	70 M	80 M	98 H	100 M	110 M	120 M
		NCBI Homo CAMTA1 KAZH		Annotation	Release		0226 DAB1	NEGR1	.,		DPYD	111	
Genome		ENS6888888171	elease 10: 735 00000189337				186094 ENSG00000173	1 ENS6000	00172260	ENS6000002	37505 ENS600000188	3641	
Data			, dbSNP bi SNP b154 v										
Viewer	197 197 197	exon cov 39792 intron-sj	ليعتم فرام م	Production of the second s	والالإسلام	لعراقتهم	no sapiens NCBI Homo	9439792 3434	WIN ^{NY} U	e philosof p	un datam	hantan da	2 scales
	с n N		and the second	(^{prov} int	اللار العالي الافتار مع	and the sta	o population (921210 30 Martin (1947)	to Mili	i palintagi	WHEEL COM	enter he	1
	RNA-seq	intron f	eatures, a		273	.), NODI	Homo sapie	ens Annot	27 at 1011 Kei	3 3		alfa fa la far an	

Genome Data Viewer

genomes

GDV is a genome "browser" which supports the visualization of genetic data mapped against >1000 NCBI curated/annotated eukaryotic reference

Genome Data Viewer cont.

Data is visualized in "tracks"

- Can include gene/feature annotations, sequence coverage, GWAS data, and more!
- Users can mix/match between their own tracks and access NCBI/partner provided ones

L	10 M		20 M	30 M	40 M	50 M	60 M	70 M	80 M	90 M	100 M		110 M	120 M	1	130 M	140 M	150 M	160 M		170 M	180 M	190 M	200 M	210 M	220 M	230 M	248,956,422
	NCBI I CAMTA1		apiens A	innotatio	on Releas						DPYD										римз					SH2A		RYR2 SM'
	. J	1 R	1		14.14		1 I I I I	11 11 11 11	1.1	11	•							•						• 14 - 1			· ·	
Genes,	ENSGOOD	20017173	000189337			ENSGOO	300186094 † ENS60000		000172260	ENSGØØØØ	237505 1ENSG000	001886	341									00000152061	ENSGØ	0000285280	, f ^e	NSG00000	042781	± © × ENS600000198
• •	÷	- • •		· - ·	· · · · · ·		- 10 Y	ንግለ እጥ	1876			14	151	· · · ·			1.77						P		16 MA			* *****
Cited	Variat:	ions, (dbSNP b1	.54 v2																								± 0 ×
Live H	efSNPs	, dbSNI	P b154 v	72																								± 0 ×
Genome	-wide a	associa	ation st	udy of :	leprosy i	n Chines	e populat	ion (pha0028)	72)																			×
	B 3 •		t					6					.:			6							6				1	:
RNA-se	1 q exon	1 cover:	age, ago	regate	(filtered	l), NCBI	Homo sapi	ens Annotat:	2 1 ion Releas	se 109 -	- log b	ase 2	1 3 scaled					1	1 3		7	1		2	2 2		2 3	2
1	9439792				در است _{ار ا} ستار ا		A discussion	19439792 2011 - 19439792	And a state of the	لي دروا بداريا و	n n n hai	glavi ^{te}	an kalan yan	an a	J.	19439792 8192	والدادسان	ومعولاتهم		وريطوا	an a		194397 11 3197	92 1	particular states	natur P	الارمحد الأحك	The state of the state of
RNA-se	q intro	on-spai	nning re	ads, ag	gregate	filtered), NCBI H	lomo sapiens	Annotatio	on Relea	ase 109	- 10	g base	2 scal	.ed													0 ×
	2148 I.I.	a land a shirt	and the second second		فقار ويعلن ويأمل	الشقيقين الراد	A contraction	921210 2049.	lor, Alto	ر الارمانية (¹	n de la de		and the first			921210 2048	(and a di	a and philipping	ر الط ^ا لكان	n ha na ha ha	nti di tenge		921210	الله والتندية _و ال	al at distan	n king sete	disabilities of the	ing and stilled as
RNA-se	q intro	on feat	tures, a	ggregat	e (filter	ed), NCE	I Homo sa	piens Annot	ation Rele	ease 109	9														Filt	tered (re	ead count fro	± ⊙ × om min to max)
27 1	3	ndeta das	and come entered	مىر جىلغى د	2 4 4 4 4 4 4 4 4 4	73 4			27	3 ha shi kan		يلى .	a fa da sa	In	2	273		المدارية المالية	in ada		273	and the second second		والمراجع المراجع والمراجع	273			and the balance and

National Library of

Objective 3 - Goals

Computational:

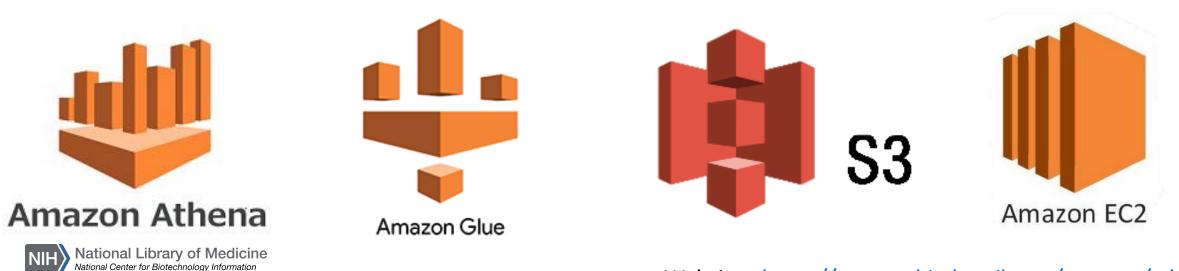
- Access and navigate Genome Data Viewer
- Upload custom data tracks to GDV
- Parse biological meaning from alignment results
- Use NCBI track data to find known clinical relevance

Case Study:

- Identify structural changes between patient DNA and reference sequence to identify possible deletions in BBS related gene
- Use NCBI dbVar data to match results to known structural variants

GDV Walkthrough

Billing – 1/4


• The most important question in cloud computing...

Billing – 2/4

• The most important question in cloud computing...

"How Much Will This Cost Me?"

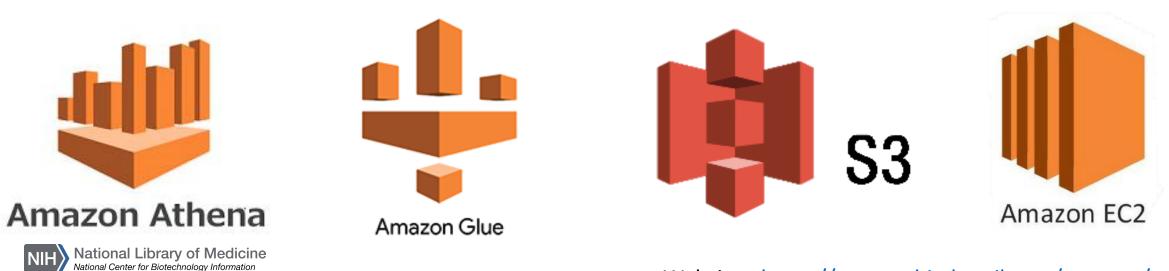
POLL!

How much do you think today's workshop cost per person?

Billing – 3/4

• The most important question in cloud computing...

"How Much Will This Cost Me?"



Billing – 4/4

• The most important question in cloud computing...

"How Much Will This Cost Me?"

Everything you did in this workshop cost ~\$0.50

Billing cont.

- AWS strives to be transparent about costs
 - <u>https://calculator.aws/#/estimate</u> Build a price estimate based on anticipated service usage
 - <u>https://aws.amazon.com/free/</u> View free-tier uses on most AWS services
 - Several tools such as Cost Explorer can help you break down usage across a group

Thank you!

